This article was downloaded by:
On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713455674
Synthesis, structure and properties of a one-dimensional coordination polymer containing both dicyanamide and ethylenediamine
Baolong Lia; Baozong Lia; Jianping Lang ${ }^{\text {ab }}$; Yong Zhang ${ }^{\text {a }}$
${ }^{\text {a }}$ College of Chemistry and Chemical Engineering, Suzhou University, Suzhou 215006, P.R. China

To cite this Article Li, Baolong, Li, Baozong, Lang, Jianping and Zhang, Yong(2004) 'Synthesis, structure and properties of a one-dimensional coordination polymer containing both dicyanamide and ethylenediamine', Journal of Coordination Chemistry, 57: 6, $477-483$
To link to this Article: DOI: 10.1080/00958970410001680372
URL: http://dx.doi.org/10.1080/00958970410001680372

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SYNTHESIS, STRUCTURE AND PROPERTIES OF A ONE-DIMENSIONAL COORDINATION POLYMER CONTAINING BOTH DICYANAMIDE AND ETHYLENEDIAMINE

BAOLONG LI*, BAOZONG LI, JIANPING LANG and YONG ZHANG
College of Chemistry and Chemical Engineering, Suzhou University, Suzhou 215006, P.R. China

(Received 6 April 2003; Revised 30 June 2003; In final form 9 February 2004)

Abstract

The nickel(II) complex $\left[\mathrm{Ni}(\mathrm{en})_{2}\left\{\mathrm{~N}(\mathrm{CN})_{2}\right\}\right] \mathrm{ClO}_{4} \mathbf{1}$ (en $=$ ethylenediamine) has been synthesized and its structure determined. The complex forms a one-dimensional chain structure via the bidentate bridging ligand dicyanamide. A two-dimensional network is formed via interchain hydrogen-bond interactions. The magnetic properties of the compound ($5-300 \mathrm{~K}$) show the existence of weak antiferromagnetic exchange interactions between paramagnetic centers along chains.

Keywords: Crystal structure; Dicyanamide; Hydrogen bonding; Nickel complex

INTRODUCTION

Pronounced interest has recently been focused on crystal engineering of supramolecular architectures assembled by means of coordinated covalent bonding or supramolecular contacts (such as hydrogen bonds, $\pi-\pi$ interactions, etc.) [1-4].

The ligand $\left[\mathrm{N}(\mathrm{CN})_{2}\right]^{-}$is a remarkably versatile building block for supramolecular architectures since it may act as a uni-, bi- or terdentate ligand. Additional ligands, such as coordinating amines (Lewis bases), in combination with dicyanamide have been shown to produce novel structural types [5-7]. Examples of unidentate $\left[\mathrm{N}(\mathrm{CN})_{2}\right]^{-}$, where coordination occurs via a terminal N , have been reported for $\left[\mathrm{Cu}(\text { phen })_{2}\left\{\mathrm{~N}(\mathrm{CN})_{2}\right\}\right]\left[\mathrm{C}(\mathrm{CN})_{3}\right] \quad[8], \quad\left[\mathrm{Cu}(\text { phen })_{2}\left\{\mathrm{~N}(\mathrm{CN})_{2}\right\}_{2}\right] \quad$ (phen $=$ phenanthroline) [9], $\left[\mathrm{Ni}\left\{\mathrm{N}(\mathrm{CN})_{2}\right\}_{2}(4-\mathrm{miez})_{4}\right] \quad\left(4-\mathrm{miez}=4\right.$-methylimidazole) [10] and $\mathrm{M}\left\{\mathrm{N}(\mathrm{CN})_{2}\right\}_{2}$ (bpym) $\cdot \mathrm{H}_{2} \mathrm{O}(\mathrm{M}=\mathrm{Fe}, \mathrm{Mn}, \mathrm{Co})\left(\right.$ bpym $=2,2^{\prime}$-bipyrimidine) [11]. Many examples of bidentate $\left[\mathrm{N}(\mathrm{CN})_{2}\right]^{-}$have been reported, $\left[\mathrm{Cu}\left\{\mathrm{N}(\mathrm{CN})_{2}\right\}_{2}(\right.$ phen $\left.)\right][12],\left[\mathrm{M}\left\{\mathrm{N}(\mathrm{CN})_{2}\right\}_{2}\right.$ $\left.(\text { pyr })_{2}\right](\mathrm{M}=\mathrm{Mn}, \mathrm{Co})(\mathrm{pyr}=2$-pyrrolidone $)[13],\left[\mathrm{Cu}\left\{\mathrm{N}(\mathrm{CN})_{2}\right\}_{2}(\mathrm{ampym})_{2}\right]($ ampym $=$ 2-aminopyrimidine) [14], [$\left.\mathrm{Ni}(\mathrm{tn})_{2}\left\{\mathrm{~N}(\mathrm{CN})_{2}\right\}\right] \mathrm{ClO}_{4} \quad(\mathrm{tn}=$ trimethylenediamine) [15],

[^0]$\left[\mathrm{Mn}\left\{\mathrm{N}(\mathrm{CN})_{2}\right\}_{2}(\text { py })_{2}\right]($ py $=$ pyridine $),\left[\mathrm{Mn}\left\{\mathrm{N}(\mathrm{CN})_{2}\right\}_{2}\left(2,2^{\prime}\right.\right.$-bipy $\left.)\right]\left(2,2^{\prime}\right.$-bipy $=2,2^{\prime}$-bipyridine) and $\left[\mathrm{Mn}\left\{\mathrm{N}(\mathrm{CN})_{2}\right\}_{2}\left(4,4^{\prime}\right.\right.$-bipy $\left.) \cdot(3 / 2 \mathrm{H})_{2} \mathrm{O}\right]\left(4,4^{\prime}\right.$-bipy $=4,4^{\prime}$-bipyridine) $[16]$, which form one-dimensional chains or two-dimensional sheets, as in $\left[\mathrm{Co}_{2}\left\{\mathrm{~N}(\mathrm{CN})_{2}\right\}_{4}\right.$ (bpym)] $\cdot \mathrm{H}_{2} \mathrm{O}$ [11]. In an attempt to prepare supramolecular architectures by using the dicyanamide ligand and ethylenediamine (en), we obtained a one-dimensional chain nickel complex, which forms a two-dimensional network by hydrogen-bonding interactions. Here we report the structure and properties of the dicyanamide complex $\left[\mathrm{Ni}(\mathrm{en})_{2}\left\{\mathrm{~N}(\mathrm{CN})_{2}\right\}\right] \mathrm{ClO}_{4}$.

EXPERIMENTAL

Materials, Reagents and Physical Measurements

All reagents were of AR grade and were used without further purification. $\mathrm{NaN}(\mathrm{CN})_{2}$ was purchased from Aldrich Company. Elemental analyses for C, H and N were performed on a Perkin-Elmer 240C instrument. IR spectra were obtained on a Nicolet 170SX FT-IR spectrophotometer in the $4000-400 \mathrm{~cm}^{-1}$ region using KBr pellets. Variable-temperature ($5-300 \mathrm{~K}$) magnetic susceptibilities were determined on a CF-1 ESM magnetic balance.

Caution! Perchlorate compounds are potential explosives. Safety precautions should be taken in handling and using these materials.

Preparation

An aqueous ($20 \mathrm{~cm}^{3}$) solution of ethylenediamine (en) $(0.060 \mathrm{~g}, 1.0 \mathrm{mmol})$ was added to a stirred aqueous solution $\left(15 \mathrm{~cm}^{3}\right)$ of $\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.183 \mathrm{~g}, 0.5 \mathrm{mmol})$. The resulting solution was continuously stirred for 30 min and then a solution of $\mathrm{NaN}(\mathrm{CN})_{2}$ $(0.045 \mathrm{~g}, 0.5 \mathrm{mmol})$ in water $\left(10 \mathrm{~cm}^{3}\right)$ was added. Well-shaped pink crystals of $\left[\mathrm{Ni}(\mathrm{en})_{2}\left\{\mathrm{~N}(\mathrm{CN})_{2}\right\}\right] \mathrm{ClO}_{4}$ were obtained from the mother liquor by slow evaporation at room temperature for two weeks. They were collected by filtration, washed with a small amount of water and dried in air. Yield: 81%. Elemental analysis confirmed the organic content (Found\%: C, 20.78; H, 4.51; N, 28.25. Calcd. For $\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{ClN}_{7} \mathrm{NiO}_{4}$: C, 20.92; H, 4.68; N, 28.47).

Crystal Structure Determination

A single crystal of Compound $\mathbf{1}$ with dimensions $0.44 \times 0.29 \times 0.16 \mathrm{~mm}$ was selected for data collection at 193.2 K, using a Rigaku Mercury CCD with graphite-monochromated Mo $\mathrm{K} \alpha$ radiation ($\lambda=0.71073 \AA$). The structure was solved by direct methods and refined by full-matrix least-squares analysis (SHELXTL-97) [17]. The positions of all remaining non-H atoms were obtained from successive Fourier syntheses. The positions of hydrogen atoms were calculated using idealized geometry. The final R_{1} value is 0.0624 for 371 parameters and 5369 independent reflections [$I_{\text {obs }}>2 \sigma(I)$] and $w R_{2}$ is 0.1312 . Anisotropic thermal factors were assigned to all the non-hydrogen atoms. A summary of the crystal data, experimental details and refinement results are listed in Table I. Atomic coordinates of non-hydrogen atoms are given in Table II.

TABLE I Crystal data and structure refinement for complex $\mathbf{1}$

Empirical formula	$\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{ClN}_{7} \mathrm{NiO}_{4}$
Temperature (K)	193.2
Formula weight	344.42
Crystal system	Monoclinic
Space group	C2/c
$a(\mathrm{~A})$	26.439(5)
b (${ }_{\text {A }}$)	15.7969(3)
$c(\AA)$	13.794(3)
β (${ }^{\circ}$)	102.37(3)
$V\left(\AA^{3}\right)$	5627(2)
Z	16
$D_{\text {calcd. }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.626
Absorption coefficient (mm^{-1})	1.591
$F(000)$	2848
θ range for data collection (${ }^{\circ}$)	3.02-27.48
Index ranges	$-34 \leq h \leq 34,-19 \leq k \leq 20,-14 \leq l \leq 17$
Reflections collections	20745
Independent reflections	6158
Data/restraints/parameters	6158/0/371
Goodness-of-fit on F^{2}	1.069
Final R_{1} and $w R_{2}[I>2 \sigma(I)]$ indices	$R_{1}=0.0624, w R_{2}=0.1312$
R_{1} and $w R_{2}$ indices (all data)	$R_{1}=0.0767, w R_{2}=0.1389$
Largest diff. peak and hole (e \AA^{-3})	0.605 and -0.468

$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0621 P)^{2}+19.2130 P\right]$.

Complete tables of atomic coordinates and thermal parameters excluding structure factors are available from the authors upon request.

RESULTS AND DISCUSSION

Crystal Structure

Selected bond lengths and angles are listed in Table III. The crystal structure of Complex 1 contains $\left[\mathrm{Ni}(\mathrm{en})_{2}\left\{\mathrm{~N}(\mathrm{CN})_{2}\right\}\right]_{n}^{n+}$ cations and disordered ClO_{4}^{-}anions (Fig. 1). There are two kinds of $\mathrm{Ni}(\mathrm{II})$ coordination environment. Both $\mathrm{Ni}(\mathrm{II})$ atoms are coordinated by four nitrogen atoms from en ligands $[\mathrm{Ni}(1)-\mathrm{N}(1), 2.109(3) \AA$; $\mathrm{Ni}(1)-\mathrm{N}(2), 2.100(3) \AA ; \mathrm{Ni}(1)-\mathrm{N}(3), 2.110(4) \AA ; \mathrm{Ni}(1)-\mathrm{N}(4), 2.106(3) \AA$ for $\mathrm{Ni}(1)$; $\mathrm{Ni}(2)-\mathrm{N}(8), 2.101(4) \AA ; \mathrm{Ni}(2)-\mathrm{N}(9), 2.096(3) \AA ; \mathrm{Ni}(2)-\mathrm{N}(10), 2.114(3) \AA ; \mathrm{Ni}(2)-\mathrm{N}(11)$, $2.123(4) \AA$ for $\mathrm{Ni}(2)$], which occupy the equatorial positions, and two nitrile nitrogen atoms from two $\left[\mathrm{N}(\mathrm{CN})_{2}\right]^{-}$ligands $[\mathrm{Ni}(1)-\mathrm{N}(5), 2.098(3) \AA ; \mathrm{Ni}(1)-\mathrm{N}(12), 2.081(3) \AA$; $\mathrm{Ni}(2)-\mathrm{N}(14), 2.082(4) \AA ; \mathrm{Ni}(2)-\mathrm{N}(7) \mathrm{a}(\mathrm{a}: x-1, y+1 / 2, z), 2.082(3) \AA]$, which occupy the axial positions. The $\mathrm{Ni}-\mathrm{N}$ bond lengths lie in the range $2.081-2.110 \AA$ for $\mathrm{Ni}(1)$ and $2.082-2.123 \AA$ for $\mathrm{Ni}(2)$, respectively. These $\mathrm{Ni}-\mathrm{N}$ bond lengths are similar to the $\mathrm{Ni}-\mathrm{N}$ distances $(2.095-2.124 \AA)$ in $\left[\mathrm{Ni}(\operatorname{tn})_{2}\left\{\mathrm{~N}(\mathrm{CN})_{2}\right\}\right] \mathrm{ClO}_{4}$ [15]. Thus, the two kinds of $\mathrm{Ni}(\mathrm{II})$ atoms in the NiN_{6} chromophore are present in similar slightly distorted octahedral coordination environments.

The $\mathrm{Ni}(\mathrm{II})$ atoms are bridged through two kinds of $\left[\mathrm{N}(\mathrm{CN})_{2}\right]^{-}$ligands. The complex forms a one-dimensional chain structure through $\mu_{1,5}\left[\mathrm{~N}(\mathrm{CN})_{2}\right]^{-}$. This structure is similar to the one-dimensional chain in $\left[\mathrm{Ni}(\operatorname{tn})_{2}\left\{\mathrm{~N}(\mathrm{CN})_{2}\right\}\right] \mathrm{ClO}_{4}$ [15], with the obvious difference that two kinds of $\mathrm{Ni}(\mathrm{II})$ atoms $[\mathrm{Ni}(1)$ and $\mathrm{Ni}(2)]$ bridged by $\left[\mathrm{N}(\mathrm{CN})_{2}\right]^{-}$

TABLE II Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement $\left(\AA \times 10^{3}\right)$ for Complex $\mathbf{1}$

Atom	x / a	y / b	z / c	$U(e q)$
$\mathrm{Ni}(1)$	1181(1)	1314(1)	9658(1)	25(1)
$\mathrm{Ni}(2)$	-1352(1)	3723(1)	9583(1)	29(1)
$\mathrm{N}(1)$	1096(1)	1190(2)	8109(2)	36(1)
$\mathrm{N}(2)$	1272(1)	-6(2)	9631(3)	$35(1)$
$\mathrm{N}(3)$	1275(1)	1437(2)	11 209(3)	38(1)
N(4)	1094(1)	2638(2)	9701(3)	33(1)
N(5)	1983(1)	1468(2)	9822(3)	34(1)
N(6)	2919(1)	1246(2)	$10015(3)$	40(1)
N(7)	3327(1)	-91(2)	9723(3)	41(1)
$\mathrm{N}(8)$	-1525(2)	3846(3)	8030(3)	49(1)
N(9)	-2092(1)	3177(2)	9329(3)	$35(1)$
N(10)	-1181(1)	3589(2)	11143 (3)	37(1)
N(11)	-607(1)	4289(3)	9874(4)	51(1)
N(12)	385(1)	1168(2)	9492(3)	40(1)
N(13)	-556(1)	1219(2)	9375(3)	37(1)
$\mathrm{N}(14)$	-1025(1)	2542(2)	9449(3)	41(1)
$\mathrm{Cl}(1)$	2432(1)	752(1)	6821(1)	34(1)
$\mathrm{Cl}(2)$	0	1766(1)	2500	42(1)
$\mathrm{Cl}(3)$	5000	1558(1)	2500	43(1)
C(1)	983(2)	292(3)	7862(4)	48(1)
C(2)	1337(2)	-245(3)	8623(4)	43(1)
C(3)	1381(2)	2336(3)	11 463(4)	46(1)
C(4)	1022(2)	2866(3)	10700 (4)	43(1)
C(5)	2416(1)	1335(2)	9891(3)	27(1)
C(6)	3110(1)	515(2)	9846(3)	32(1)
C(7)	-1971(2)	3298(4)	7644(4)	59(1)
C(8)	-2356(2)	3373(4)	8306(4)	52(1)
C(9)	-746(2)	4159(4)	11 545(4)	57(1)
C(10)	-351(2)	4082(4)	$10905(4)$	58(1)
C(11)	-55(1)	1218(2)	9446(3)	29(1)
C(12)	-785(1)	1938(2)	9424(3)	29(1)
$\mathrm{O}(1)$	2178(2)	-42(3)	6731(4)	96(2)
$\mathrm{O}(2)$	2978(1)	636(3)	7123(3)	76(1)
$\mathrm{O}(3)$	2297(2)	1179(3)	5884(3)	68(1)
$\mathrm{O}(4)$	2211(8)	1153(19)	7520(19)	88(8)
$\mathrm{O}(5)$	2314(11)	1260(20)	7580(20)	105(8)
$\mathrm{O}(6)$	89(3)	1242(5)	1740(4)	132(3)
$\mathrm{O}(7)$	435(3)	2223(7)	2798(8)	213(5)
$\mathrm{O}(8)$	4635(7)	2158(8)	2550(11)	133(7)
$\mathrm{O}(8 \mathrm{~A})$	4537(4)	1880(16)	2495(12)	179(11)
$\mathrm{O}(9)$	4849(3)	1238(9)	1408(8)	68(3)
$\mathrm{O}(9 \mathrm{~A})$	4956(10)	959(12)	1847(14)	177(11)

$U(e q)$ is defined as one-third of the trace of the orthogonalized $U_{i j}$ tensor.
ligands are located alternately in the one-dimensional chain of the title complex, but only one kind of $\mathrm{Ni}(\mathrm{II})$ atom is located in the tn complex. Each $\left[\mathrm{N}(\mathrm{CN})_{2}\right]^{-}$is coordinated to two metal atoms via the two nitrile nitrogen atoms. The dicyanamide ligand possesses pseudo- $C_{2 \mathrm{v}}$ symmetry with CN bond distances ranging from 1.145 to $1.148 \AA$ for one kind of $\left[\mathrm{N}(\mathrm{CN})_{2}\right]^{-}$and from 1.150 to $1.153 \AA$ for the other. Bond angles related to the dicyanamide ligands, which occupy the axial positions of the octahedron, are $162.8(3)$ and $169.2(3)^{\circ}$ for $\mathrm{Ni}(1)-\mathrm{N}(5)-\mathrm{C}(5)$ and $\mathrm{Ni}(1)-\mathrm{N}(12)-\mathrm{C}(11)$, respectively and $171.4(3)$ and $172.2(3)^{\circ}$ for $\mathrm{Ni}(2)-\mathrm{N}(14)-\mathrm{C}(12)$ and $\mathrm{Ni}(2)-\mathrm{N}(7) \mathrm{b}-\mathrm{C}(6) \mathrm{b}$ (b: $x+1 / 2, y-1 / 2, z$), respectively. The two nickel atoms are bridged by $\left[\mathrm{N}(\mathrm{CN})_{2}\right]^{-}$ separated by 7.686 and $7.718 \AA$ for $\mathrm{Ni}(1)-\mathrm{Ni}(2)$ and $\mathrm{Ni}(1)-\mathrm{Ni}(2 \mathrm{~A})$, respectively.

TABLE III Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for Complex 1

$\mathrm{Ni}(1)-\mathrm{N}(1)$	$2.109(3)$	$\mathrm{Ni}(1)-\mathrm{N}(2)$	$2.100(3)$
$\mathrm{Ni}(1)-\mathrm{N}(3)$	$2.110(4)$	$\mathrm{Ni}(1)-\mathrm{N}(4)$	$2.106(3)$
$\mathrm{Ni}(1)-\mathrm{N}(5)$	$2.098(3)$	$\mathrm{Ni}(1)-\mathrm{N}(12)$	$2.081(3)$
$\mathrm{Ni}(2)-\mathrm{N}(8)$	$2.101(4)$	$\mathrm{Ni}(2)-\mathrm{N}(9)$	$2.096(3)$
$\mathrm{Ni}(2)-\mathrm{N}(10)$	$2.114(3)$	$\mathrm{Ni}(2)-\mathrm{N}(11)$	$2.123(4)$
$\mathrm{Ni}(2)-\mathrm{N}(14)$	$2.082(4)$	$\mathrm{Ni}(2)-\mathrm{N}(7)^{\mathrm{a}}$	$2.082(3)$
$\mathrm{N}(5)-\mathrm{C}(5)$	$1.145(5)$	$\mathrm{N}(6)-\mathrm{C}(5)$	$1.313(5)$
$\mathrm{N}(6)-\mathrm{C}(6)$	$1.301(5)$	$\mathrm{N}(7)-\mathrm{C}(6)$	$1.148(5)$
$\mathrm{N}(12)-\mathrm{C}(11)$	$1.153(5)$	$\mathrm{N}(13)-\mathrm{C}(11)$	$1.308(5)$
$\mathrm{N}(13)-\mathrm{C}(12)$	$1.295(5)$	$\mathrm{N}(14)-\mathrm{C}(12)$	$1.150(5)$
$\mathrm{N}(1)-\mathrm{Ni}(1)-\mathrm{N}(2)$	$82.96(14)$	$\mathrm{N}(1)-\mathrm{Ni}(1)-\mathrm{N}(3)$	$179.43(13)$
$\mathrm{N}(1)-\mathrm{Ni}(1)-\mathrm{N}(4)$	$97.63(13)$	$\mathrm{N}(2)-\mathrm{Ni}(1)-\mathrm{N}(3)$	$96.90(14)$
$\mathrm{N}(2)-\mathrm{Ni}(1)-\mathrm{N}(4)$	$19.37(15)$	$\mathrm{N}(3)-\mathrm{Ni}(1)-\mathrm{N}(4)$	$82.51(14)$
$\mathrm{N}(1)-\mathrm{Ni}(1)-\mathrm{N}(5)$	$90.37(14)$	$\mathrm{N}(2)-\mathrm{Ni}(1)-\mathrm{N}(5)$	$90.00(13)$
$\mathrm{N}(3)-\mathrm{Ni}(1)-\mathrm{N}(5)$	$89.08(14)$	$\mathrm{N}(4)-\mathrm{Ni}(1)-\mathrm{N}(5)$	$89.77(13)$
$\mathrm{N}(1)-\mathrm{Ni}(1)-\mathrm{N}(12)$	$89.54(15)$	$\mathrm{N}(2)-\mathrm{Ni}(1)-\mathrm{N}(12)$	$90.27(13)$
$\mathrm{N}(3)-\mathrm{Ni}(1)-\mathrm{N}(12)$	$91.01(15)$	$\mathrm{N}(4)-\mathrm{Ni}(1)-\mathrm{N}(12)$	$89.96(13)$
$\mathrm{N}(8)-\mathrm{Ni}(2)-\mathrm{N}(9)$	$92.96(16)$	$\mathrm{N}(8)-\mathrm{Ni}(2)-\mathrm{N}(10)$	$179.53(16)$
$\mathrm{N}(8)-\mathrm{Ni}(2)-\mathrm{N}(11)$	$\mathrm{N}(9)-\mathrm{Ni}(2)-\mathrm{N}(10)$	$96.76(14)$	
$\mathrm{N}(9)-\mathrm{Ni}(2)-\mathrm{N}(11)$	$\mathrm{N}(10)-\mathrm{Ni}(2)-\mathrm{N}(11)$	$82.02(16)$	
$\mathrm{N}(8)-\mathrm{Ni}(2)-\mathrm{N}(14)$	$\mathrm{N}(9)-\mathrm{Ni}(2)-\mathrm{N}(14)$	$90.39(14)$	
$\mathrm{N}(10)-\mathrm{Ni}(2)-\mathrm{N}(14)$	$\mathrm{N}(11)-\mathrm{Ni}(2)-\mathrm{N}(14)$	$90.41(15)$	
$\mathrm{N}(8)-\mathrm{Ni}(2)-\mathrm{N}(7)^{\mathrm{a}}$	$89.79(15)$	$\mathrm{N}(9)-\mathrm{Ni}(2)-\mathrm{N}(7)^{\mathrm{a}}$	$90.15(14)$
$\mathrm{N}(10)-\mathrm{Ni}(2)-\mathrm{N}(7)^{\mathrm{a}}$	$89.84(14)$	$\mathrm{N}(11)-\mathrm{Ni}(2)-\mathrm{N}(7)^{\mathrm{a}}$	$89.04(15)$
$\mathrm{Ni}(1)-\mathrm{N}(5)-\mathrm{C}(5)$	$\mathrm{Ni}(1)-\mathrm{N}(12)-\mathrm{C}(11)$	$169.2(3)$	
$\mathrm{Ni}(2)-\mathrm{N}(14)-\mathrm{C}(12)$	$\mathrm{Ni}(2)-\mathrm{N}(7) \mathrm{B}-\mathrm{C}(6)^{\mathrm{b}}$	$172.2(3)$	

Symmetry code: ${ }^{\mathrm{a}} x-1, y+1 / 2, z ;{ }^{\mathrm{b}} x+1 / 2, y-1 / 2, z$.

FIGURE 1 The local coordination of $\mathrm{Ni}(1)$ and $\mathrm{Ni}(2)$ in Complex $\mathbf{1}$ with 30% thermal ellipsoids.

Hydrogen bonding occurs between the uncoordinated amide nitrogen atom $\mathrm{N}(6)$ and $\mathrm{N}(13)$ from dicyanamide and amine hydrogen atoms from ethylenediamine (en): $\mathrm{N}(6) \cdots \mathrm{N}(4)(1 / 2-x, 1 / 2-y, 2-z), 3.103 \AA$ and $\mathrm{N}(6) \cdots \mathrm{H}-\mathrm{N}(4)(1 / 2-x, 1 / 2-y$, $2-z) 153.3^{\circ} ; \mathrm{N}(13) \cdots \mathrm{N}(2)(-x,-y, 2-z), 3.202 \AA$ and $\mathrm{N}(13) \cdots \mathrm{H}-\mathrm{N}(2)(-x,-y$, $2-z) 154.9^{\circ}$. A two-dimensional network is formed via hydrogen-bonding interactions (Fig. 2). The shorter $\mathrm{Ni} \cdots \mathrm{Ni}$ interchain distances are 7.725 and $7.793 \AA$ for $\mathrm{Ni}(1)-$ $\mathrm{Ni}(1 \mathrm{D})$ and $\mathrm{Ni}(1)-\mathrm{Ni}(1 \mathrm{~J})$, respectively. The perchlorate anions are located between the chains. Hydrogen bonding also occurs between amine hydrogen atoms from ethylenediamine (en) and oxygen atoms from disordered ClO_{4}^{-}.

FIGURE 2 Two-dimensional network formed via hydrogen-bonding interactions in Complex 1.

FIGURE 3 Plot of $1 / \chi_{\mathrm{m}} v s . T$ for Complex 1.

IR and Magnetic Measurements

The IR spectrum of $\mathbf{1}$ shows the following absorptions: 3599m, 3368s, 3302s, 3175w, $2943 \mathrm{~m}, 2886 \mathrm{~m}, 2303 \mathrm{vs}, 2261 \mathrm{~s}$, 2187vs, 1605s, 1458w, 1385w, 1346s, 1096vs, 999s, $949 \mathrm{~m}, 671 \mathrm{~s}, 621 \mathrm{~s}$ and $517 \mathrm{scm}^{-1}$. The absorption bands at 3599,3368 and $3302 \mathrm{~cm}^{-1}$ are attributed to NH of the NH_{2} groups; the $2303 \mathrm{~cm}^{-1}$ band is a $v_{\mathrm{s}}+v_{\text {as }}(\mathrm{C}-\mathrm{N})$ vibration. 2261 and $2187 \mathrm{~cm}^{-1}$ bands are due to $\mathrm{C} \equiv \mathrm{N}$ stretching vibrations; the $1096 \mathrm{~cm}^{-1}$ band is attributed to ClO_{4}^{-}.

The magnetic moment of $\mathbf{1}$ is $2.78-2.98 \mathrm{BM}$ for one $\mathrm{Ni}(\mathrm{II})$ in the temperature range $5-300 \mathrm{~K}$. The value corresponds to the spin-only value (2.83 BM) for $S=1$. Variable temperature magnetic susceptibility studies in the temperature range $5-300 \mathrm{~K}$, showed that 1 obeys the Curie-Weiss law, $\chi_{\mathrm{m}}=C /(T-\theta)$, with $\theta=-1.67 \mathrm{~K}$ and $C=1.221 \mathrm{~cm}^{3} \mathrm{~K} \mathrm{~mol}^{-1}$ (Fig. 3). This value of θ for $\mathbf{1}$ is consistent with values of θ for other $\mu_{1,5^{-}}\left[\mathrm{N}(\mathrm{CN})_{2}\right]^{-}$bridging compounds, such as -5.15 K for $\left[\mathrm{Ni}(\mathrm{tn})_{2}\left\{\mathrm{~N}(\mathrm{CN})_{2}\right\}\right]$
ClO_{4} [15], -1.90 K for $\mathrm{Mn}\left[\mathrm{N}(\mathrm{CN})_{2}\right]_{2}(\mathrm{py})_{2},-3.5 \mathrm{~K}$ for $\mathrm{Mn}\left[\mathrm{N}(\mathrm{CN})_{2}\right]_{2}\left(2,2^{\prime}\right.$-bipy $)$, -4.7 K for $\mathrm{Mn}\left[\mathrm{N}(\mathrm{CN})_{2}\right]_{2}\left(4,4^{\prime}\right.$-bipy) [16], -0.76 K for $\mathrm{Mn}\left[\mathrm{N}(\mathrm{CN})_{2}\right]_{2}($ bpym $) \cdot \mathrm{H}_{2} \mathrm{O}$, -7.6 K for $\mathrm{Fe}\left[\mathrm{N}(\mathrm{CN})_{2}\right]_{2}(\mathrm{bpym}) \cdot \mathrm{H}_{2} \mathrm{O}$ and -5.4 K for $\mathrm{Co}\left[\mathrm{N}(\mathrm{CN})_{2}\right]_{2}(\mathrm{bpym}) \cdot \mathrm{H}_{2} \mathrm{O}[11]$, indicating very weak antiferromagnetic coupling. Weak antiferromagnetic coupling is typical for bridging dicyanamide compounds.

Acknowledgments

This project was supported by the Funds of Key Laboratory of Organic Synthesis Committee of Jiansu Province (KJS01018) and Funds for Young Teachers of Suzhou University.

References

[1] Z.-F. Chen, R.-G. Xiong, B.F. Abrahams, X.-Z. You and C.-M. Che, J. Chem. Soc., Dalton Trans. 2453 (2001).
[2] H.-J. Chen, M.-L. Tong and X.-M. Chen, Inorg. Chem. Commun. 4, 76 (2001).
[3] J.-C. Yao, W. Huang, B. Li, S.-H. Gou and Y. Xu, Inorg. Chem. Commun. 5, 711 (2002).
[4] W.-Z. Wang, X. Liu, D.-Z. Liao, Z.-H. Jiang, S.-P. Yan, X.-K. Yao and G.-L. Wang, Inorg. Chem. Commun. 4, 416 (2001).
[5] Z.-M. Wang, B.-W. Sun, J. Luo, S. Gao, C.-S. Liao, C.-H. Yan and Y. Li, Inorg. Chim. Acta 332, 127 (2002).
[6] J.L. Manson, C.D. Incarvito, A.L. Rheingold and J.S. Miller, J. Chem. Soc., Dalton Trans. 3705 (1998).
[7] A. Claramunt, A. Escuer, F.A. Mautner, N. Sanz and R. Vicente, J. Chem. Soc., Dalton Trans. 2627 (2000).
[8] I. Potocnak, M. Dunaj-Jurco, D. Miklos and L. Jager, Acta Crystallogr. C52, 1653 (1996).
[9] I. Potocnak, M. Dunaj-Jurco, D. Miklos, M. Kabesova and L. Jager, Acta Crystallogr. C51, 600 (1995).
[10] J. Kozisek, H. Paulus, M. Dankova and M. Hvastijova, Acta Crystallogr. C52, 3019 (1996).
[11] S.R. Marshall, C.D. Incarvito, J.L. Manson, A.L. Rheingold and J.S. Miller, Inorg. Chem. 39, 1969 (2000).
[12] J.-H. Luo, M.-C. Hong, J.-B. Weng, Y.-J. Zhao and R. Cao, Inorg. Chim. Acta 329, 59 (2002).
[13] B.-W. Sun, S. Gao, B.-Q. Ma and Z.-M. Wang, Inorg. Chem. Commun. 4, 72 (2001).
[14] G.A.V. Albada, M.E. Quiroz-Castro, I. Mutikainen, U. Turpeinen and J. Reedijk, Inorg. Chim. Acta 298, 221 (2000).
[15] B.-L. Li, J.-G. Ding, J.-P. Lang, Z. Xu and J.-T. Chen, J. Mol. Struct. 616, 175 (2002).
[16] J.L. Manson, A.M. Arif, C.D. Incarvito, L.M. Liable-Sands, A.L. Rheingold and J.S. Miller, J. Solid State Chem. 145, 369 (1999).
[17] G.M. Sheldrick, SHELXS-97 and SHELXL-97 (University of Göttingen, Göttingen, 1997).

[^0]: *Corresponding author. E-mail: blli1965@pub.sz.jsinfo.net

